viernes, 3 de abril de 2015

Resumen de la Edición 6.2: Número Pi del Carnaval de Matemáticas


Parece que era ayer cuando empezábamos la Edición 6.2: Número Pi del Carnaval de Matemáticas. Pero lo cierto es que ya ha llegado a su fin y es el momento de recopilar todas las aportaciones. En total, han sido 17, que dadas las fechas en las que nos encontramos tiene mucho mérito. Muchas gracias por ello a todos los participantes.

Pero vayamos ya con lo verdaderamente importante: el resumen de las entradas de este Carnaval.  

Lunes, 23 de marzo

  • Recordando a Emmy Noether.  Siempre es una alegría encontrar un doodle dedicado a las matemáticas. Y si es a una mujer como tan grande como Emmy Noether, mucho más.

  • Premio #CarnaMat61. Muy reñida ha estado la votación de la edición anterior. ¿Quieres saber quién se llevó finalmente el premio?

  • Lógica romántica y esdrújula. Introducción a la lógica temporal, o cómo empezar una entrada con una escena romántica y terminarla hablando del flujo de datos en Intenet.

Martes, 24 de marzo

    Miércoles, 25 de marzo

      • Un premio galáctico. Una forma divertida de crear números enormes con unas pocas cifras y un par de operaciones.



      Jueves, 26 de marzo

        Viernes, 27 de marzo
        • Criptografía simétrica. Una introducción a esta clase de criptografía, en la que se usa la misma clave para cifrar y descifrar.

        • XXXI Olimpiada Matemática Thales. Crónica de Rafalillo de este evento en su fase provincial. Y de regalo, uno de los seis problemas que tuvieron que resolver los alumnos.



        Domingo, 29 de marzo
          • Tweet-a-Program en Pikasle. Stephen Wolfram, el creador de Mathematica, desafía a escribir programas que se puedan tuitear, es decir, que ocupen menos de 140 caracteres.


          Fuera de plazo (por no coincidir su publicación con las fechas del Carnaval)

          • Celebrando el Día de Pi. Desde el Colegio Loyola de Oviedo nos envían este divertido vídeo con su particular homenaje al número pi.

          Éstas son todas las entradas que he recopilado entre la web del Carnaval de Matemáticas, el grupo de Facebook del Carnaval de Matemáticas. y los tuits enviados a la cuenta de twitter @CarnaMat usando el hashtag #CarnaMat62. Es posible que se me haya pasado alguna. En tal caso, por favor no dudéis en decírmelo.

          Y ya por último, queda ponerle la guinda a esta edición eligiendo la mejor entrada del Carnaval. Puedes votar a tres entradas distintas, con 4, 2 y 1 punto cada una. Si no has participado en esta edición, debes acompañar a tu voto el enlace con tu perfil en la web del Carnaval de MatemáticasEl plazo para las votaciones está abierto hasta el día 15 de abril.

          Como siempre, ha sido un placer organizar esta edición. Os espero a todos en la siguiente edición del Carnaval de Matemáticas que organiza todo un clásico como El mundo de Rafalillo


          miércoles, 25 de marzo de 2015

          El desafío científico 4 #edc4

          Composición en rojo, amarillo, azul y negro (Mondrian, 1926) | fuente

          "Los métodos de X son considerados casi universalmente como irreprochables desde el punto de vista del rigor."

          "Una prueba válida mantiene su poder cuando no se dibuja ninguna figura, pero muchas de las demostraciones de X no pasarían ese corte...El valor de su obra [...] se ha exagerado enormemente."

          Qué curioso. Dos matemáticos hablando de un tercero y con opiniones tan opuestas. ¿Quién es este misterioso X? Y ya que una cosa lleva a la otra, ¿quiénes son esos dos matemáticos que no se ponen de acuerdo en su valoración del trabajo de X? En esta ocasión no habrá ninguna pista adicional, lo cual ya es en sí podría ser una pista...

          Como siempre, los comentarios se moderarán mientras dure el desafío. Y de nuevo os invito a comentar la jugada en Twitter con el hashtag #edc4. 

          El plazo se cierra el próximo domingo 29 a las 23:59.

          SOLUCIÓN: Como bien habéis indicado, el protagonista es Euclides (325-265 a.C.), el insigne matemático griego que recopiló en sus Elementos todo el saber geométrico hasta su época.



          NOTA: Esta entrada participa en la Edición 6.2 del Carnaval de Matemáticas que organiza este blog, La Aventura de la Ciencia.

          lunes, 23 de marzo de 2015

          Sigue al día la Edición 6.2: Número Pi del Carnaval de Matemáticas


          Pues sí, ya estamos a lunes, 23 de marzo de 2015, día en el que comienza oficialmente la Edición 6.2: Número Pi del Carnaval de Matemáticas. Y como viene siendo habitual en este blog ante tal magno evento, vamos a recopilar en esta entrada todas las aportaciones que se vayan realizando, para que puedan consultarse sin esperar a que salga el resumen la semana que viene. Intentaré respetar el orden cronológico en que el bloguero comunique su participación y actualizar esta entrada, por lo menos, cada día a última hora. 

          Aprovecho para recordaros que el Carnaval de Matemáticas es una iniciativa de Tito Eliatron para que, durante una semana al mes, los blogueros interesados escriban artículos divulgando las matemáticas de la forma que consideren más adecuada. El único requisito es que aparezcan en dicha entrada los enlaces a la web del Carnaval de Matemáticas y al blog anfitrión, en este caso La Aventura de la Ciencia, indicando que participas en la Edición 6.2: Número Pi del Carnaval de Matemáticas.  

          Una vez publicada la entrada debes comunicarlo de alguna de las siguientes maneras. Puedes mandar un tweet al twitter oficial del Carnaval de Matemáticas,@Carnamat, o al del propio Tito, @eliatroncon el hashtag #CarnaMat62desde donde se retwitearán, en la medida de lo posible, todas las entradas participantes. También puedes dejar un comentario en esta misma entrada con un enlace a tu aportación. O incluso dejar una reseña de tu entrada en la web del Carnaval de Matemáticas. Si das a conocer tu aportación de esta última manera, se publicará automáticamente en el grupo de Facebook del Carnaval de Matemáticas. y se mandará un tuit desde la cuenta @CarnaMat con el enlace de tu aportación y el hashtag #CarnaMat62.

          Dicho esto, dejamos ya paso a los protagonistas.

          Lunes, 23 de marzo
          Martes, 24 de marzo
          Miércoles, 25 de marzo

          jueves, 12 de marzo de 2015

          Carnaval de Matemáticas 6.2: Número Pi. 23-29 de marzo.

          Así es, pues la matemática: te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponden por nacimiento”.

          Esta hermosa frase es de Proclo (410-485), uno de los últimos grandes filósofos clásicos griegos, que se ha ganado a pulso encabezar la presentación de la Edición 6.2: Número Pi del Carnaval de Matemáticas desde el momento en que la leí.

          Busto de Proclo (fuente)

          ¿Y por qué esta edición está "dedicada" al número π? Primero, porque Tito Eliatron ha propuesto dedicar cada una de las ediciones de este sexto año a un concepto matemático. Y segundo, porque mientras Proclo vivía en una Grecia decadente, que ya había realizado sus principales logros en matemáticas, muy lejos de allí, en China, vivía un talentoso matemático y astrónomo llamado Zu Chongzhi (429-500). Su padre se había encargado de formarlo en estas dos ciencias, igual que había hecho su abuelo con su padre, y así sucesivamente durante varias generaciones. Él mismo continuaría con la tradición familiar y educaría a su hijo Zu Geng, quien también fue un destacado matemático.

          Retrato de Zu Chongzhi (fuente)

          Una de las principales aportaciones a las matemáticas de Zu Chongzhi está relacionada precisamente con el número que nos compete. Un número que ya fascinó a los griegos y que hoy es, sin duda, uno de los más populares: el número π (pi).

          Como todos aprendemos en la escuela, el número π es la relación entre la longitud de una circunferencia y su diámetro. Es un número irracional, y como tal, no puede expresarse de la forma a/b, siendo a y b dos números enteros. Nos tenemos que conformar con truncar su valor numérico, cuyas primeras cifras son las siguientes:

          π ≈ 3,14159265358979323846…


          Los antiguos egipcios y mesopotámicos fueron los primeros en intentar calcular el valor de π, aunque hay que admitir que fueron aproximaciones bastante simples, dicho sea sin desmerecer sus intentos. Hubo que esperar al siglo III a.C., cuando el gran Arquímedes (287 a.C. – 212 a. C.) el científico más importante de la antigüedad, se acercó notablemente al valor de π, gracias a un método sencillo pero efectivo que él mismo ideó.

          Ya entonces se sabía que el perímetro de una circunferencia de radio la unidad es precisamente π. Así que para calcular este perímetro construyó dos polígonos regulares, uno interior y otro exterior al círculo. Arquímedes aumentó el número de lados de ambos polígonos, de tal manera que las figuras se iban “pareciendo” cada vez más a una circunferencia: primero fueron pentágonos, luego hexágonos, y así sucesivamente. 


          Método de Arquímedes para acotar el valor de pi (fuente)

          De esta manera, consiguió construir dos polígonos de 96 lados. Como eran regulares, calcular su perímetro era relativamente sencillo. El polígono interior proporcionaba el límite inferior del perímetro del círculo, mientras que el polígono exterior establecía el límite superior. Con este método pudo calcular que:

          3+ 10/71 < π < 3 + 1/7

          Si expresamos el resultado en decimales, podemos apreciar mejor la precisión de la aproximación del genio de Siracusa:

          3,140845 < π < 3,142858

          Éstos fueron los mejores límites del valor de π durante más de 600 años, hasta que apareció en escena Zu Chongzhi.

          Se dice que Zu Chongzhi empezó a calcular el valor de pi en el 464, cuando contaba con 35 años. No tuvo que partir de cero, puesto que numerosos compatriotas matemáticos antes que él habían hecho ya ciertos avances. Alrededor del año 263, Liu Hui (220-280), por ejemplo, calculó dicho valor con una precisión de cinco decimales (3,14159), por medio de un polígono regular de 192 lados. Hui publicó su resultado en un comentario al libro Nueve capítulos del arte matemático, un tratado de matemáticas que proporcionaba métodos para resolver problemas cotidianos de ingeniería, topografía, comercio o impuestos, a partir de 246 problemas prácticos. Este libro es seguramente el más influyente en la historia de las matemáticas chinas al recopilar todo el saber de su época, y jugó un papel similar al de los Elementos de Euclides en Grecia.

          Método de aproximación de Liu Hui (fuente)

          Con estos cimientos, y tras varios años de estudio, en el año 680 Zu Chongzhi estimó el valor de π en siete decimales, y comprendido entre 3.1415926, “valor por defecto” y 3.1415927, “valor por exceso”. También dio dos aproximaciones racionales de π, 22/7, “valor aproximado” y 355/113, “valor preciso”.

          El resultado del matemático chino es extraordinario por doble motivo. No sólo consiguió mejorar el resultado de Arquímedes (algo de lo que pueden presumir muy pocos matemáticos), sino que lo hizo sin tener conocimiento de su trabajo. El valor preciso de π según Zu Chongzhi es una aproximación tan buena (355/113 ≈ 3,1415929...) que hace honor a su nombre, y no fue igualada hasta el siglo XV, casi un milenio después.

          ¿Cómo llegó Zu Chongzhi a esta aproximación? Por desgracia no lo sabemos. Es muy probable que los cálculos estuviesen incluidos en el libro Zhui shu (Método de interpolación), donde Zu Chongzhi también habría calculado correctamente el volumen de una esfera. Este libro fue incluido entre los Diez Clásicos Matemáticos de la dinastía Sui, que se usaban en la Academia Imperial. Pero por lo visto, el Zhui shu era demasiado complicado para los estudiantes y acabó siendo eliminado del programa. Esto explicaría que el libro no haya sobrevivido hasta nuestros días, por lo que los cálculos que llevaron a Zu Chongzhi a su valor preciso de π no son más que conjeturas.

          Y con esta breve y caprichosa introducción al número π damos por inaugurada la Edición 6.2: Número Pi del Carnaval de Matemáticas.



          Para el que no lo conozca, el Carnaval de Matemáticas es una iniciativa de Tito Eliatron para que, durante una semana al mes, los blogueros interesados escriban artículos divulgando las matemáticas. El formato del texto es libre; lo mismo se puede participar comentando una película, recordando una cita ingeniosa, subiendo una imagen o hablando de un libro. Cualquier cosa que tenga relación con las matemáticas. El único requisito es que aparezcan en la entrada los enlaces a la web del Carnaval de Matemáticas y al blog anfitrión, en este caso La Aventura de la Ciencia, indicando que participas en la Edición 6.2 del Carnaval de Matemáticas. Y si no tienes un blog, puedes registrarte en la web del Carnaval de las Matemáticas y publicar tu entrada allí.

          Una vez publicada la entrada es conveniente que lo comuniques. Para ello tienes diversas maneras. Puedes mandar un tweet al twitter oficial del Carnaval de Matemáticas, @Carnamat, o al del propio Tito, @eliatron, con el hashtag #CarnaMat62desde donde se retwitearán, en la medida de lo posible, todas las entradas participantes. También puedes dejar un comentario en esta misma entrada con un enlace a tu aportación. O incluso dejar una reseña de tu entrada en la web del Carnaval de Matemáticas. Si das a conocer tu aportación de esta última manera, se publicará automáticamente en el grupo de Facebook del Carnaval de Matemáticas. y se mandará un tuit desde la cuenta @CarnaMat con el enlace de tu aportación y el hashtag #CarnaMat62. Tres pájaros de un tiro.

          En esta ocasión, el Carnaval de Matemáticas se celebrará en la semana del 23 al 29 de marzo. Luego recopilaré todas las entradas que hayan participado (cuantas más, mejor) y la semana siguiente publicaré un resumen con todas ellas. Y para finalizar, como viene siendo habitual en las últimas ediciones, los internautas tendrán la oportunidad de elegir la entrada que más les haya gustado de esta edición, dando su voto en los comentarios del resumen. (Por cierto, todavía estás a tiempo de hacerlo en la Edición 6.1: Números Perfectos que ha organizado Tito.)

          Te animo a participar, que esta vez pienso pasar lista.

          Y para ir abriendo boca, aquí os dejo con los resúmenes de las 51 ediciones anteriores. Casi nada.

          domingo, 18 de enero de 2015

          La pizarra de Dmitri Ivanenko

          Pocas pizarras en el mundo pueden considerarse tan afortunadas como la del físico ruso Dmitri Ivanenko (1904-1994). Desde 1944, y durante medio siglo, Ivanenko organizó un seminario de física teórica en la Universidad de Moscú. Su gran virtud fue el amplio abanico de problemas que se trataban, y su intento de conectarlos con los diversos campos de la física teórica, ya fuese física de partículas, nuclear o teoría de campos. Los físicos más ilustres del mundo fueron a dicho seminario, entre ellos varios premios Nobel como Paul Dirac, Hideki Yukawa, Niels Bohr, Illya Prigogine, Samuel Ting, Murray Gell-Mann o Gerard 't Hooft. A todos estos Ivanenko les pidió que dejaran en la pizarra de su despacho una frase para la posteridad.

          Éste es el resultado.

          "Physical law should have mathematical beauty" (Dirac, 1956) | Fuente

          El inglés Paul Dirac escribió con tiza lo siguiente: “Una ley física debe poseer belleza matemática”. Esta era, según el premio Nobel de 1933, la esencia de la física.

          "Nature is simple in its essence" (Yukawa, 1959) | Fuente

          Hideki Yukawa, el japonés pionero de la moderna teoría de las fuerzas nucleares fuertes y premio Nobel de 1949, dejó la frase: “La naturaleza es simple en su esencia”.

          "Contraria non contradictoria complementa sunt" (Bohr, 1961) | Fuente

          El danés Niels Bohr, padre de la teoría cuántica del átomo, escribió allí la máxima de su famoso principio de complementariedad: “Contraria non contradictoria complementa sunt” (los contrarios no son contradictorios, sino complementarios).

          "Time precedes existence" (Prigogine, 1987) | Fuente

          El ruso Illya Prigogine, estudioso del tiempo y premio Nobel de química en 1977, sentenció “El tiempo precede a la existencia”.

          "Physics is an experimental science" (Ting, 1988) | Fuente

          Samuel Ting, premio Nobel en 1976 por el descubrimiento del mesón J/psi, escribió“La física es una ciencia experimental”.

          "Read 'Nature Conformable to Herself' in complexity" (Gell-Mann, 2007) | Fuente

          El estadounidense Murray Gell-Mann, premio Nobel de 1969, dejó para la posteridad “Leed 'la naturaleza se conforma a sí misma' en complejidad”.

          "History repeats itself and will continue to do so, but not in a predictable manner" ('t Hooft, 2011) | Fuente

          Gerard 't Hooft, holandés premio Nobel de 1999, escribió el epígrafe “La historia se repite y seguirá haciéndolo, pero no de una manera predecible”.

          Dmitri Ivanenko | Fuente

          Dmitri Ivanenko fue uno de los físicos rusos más importantes del siglo XX. Profesor de la Universidad de Moscú durante más de medio siglo, hizo importantes contribuciones a la física nuclear, teoría de campos y teoría gravitatoria. Publicó más de 300 artículos científicos, incluyendo seis monografías y once volúmenes. Entre otros logros, fue el primero en afirmar que el neutrón formaba parte del núcleo atómico y predijo la existencia de la radiación de sincrotón, esto es, los rayos X que emiten los electrones al girar por el acelerador a gran velocidad.

          NOTA: Esta entrada participa en la Edición LIX del Carnaval de la Física cuyo blog anfitrión es El mundo de las Ideas.