martes, 11 de noviembre de 2014

El desafío científico 2 #edc2

Galatea de las esferas (Salvador Dalí, 1952) | Fuente

"Desiste de desterrar la razón de tu mente por su desconcertante novedad. Sopésala, en cambio, con un juicio perspicaz. Después, si es que te parece cierta, cede a ella. Si es falsa, ármate para combatirla. Porque la mente desea descubrir con la razón aquello que existe en la infinitud del espacio que se encuentra ahí fuera, más allá de las murallas de este mundo [...] Esta es, pues, mi primera cuestión. En todas las dimensiones, tanto en este lado como en el otro, hacia arriba o hacia abajo a través del universo, no hay fin."

Esta enorme cita no la ha hecho ningún científico, sino un poeta romano clásico de hace más de 2.000 años. Pero sí sirvió para abrir un influyente artículo de cosmología de mediados de la década de 1970. ¿De qué artículo estamos hablando y por qué es tan importante? Estas son las pistas:
  1. Está firmado por cuatro astrofísicos que trabajaban en Estados Unidos. Tres de ellos eran oriundos de allí. La cuarta había nacido en Inglaterra.
  2. Centrémonos en ella. Fue una brillante intérprete de música y pudo haberse dedicado profesionalmente a ello. Durante dos años estuvo tocando en la orquesta nacional.
  3. Finalmente se decantó por la física; en concreto, por el estudio de la evolución de las galaxias y su importancia en cosmología.
  4. Murió de cáncer cuando acababa de cumplir cuarenta años.
Como la vez anterior, los comentarios se moderarán para que la avalancha de respuestas que espero no se publiquen a medida que lleguen. Y de nuevo os invito a comentar la jugada en Twitter con el hashtag #edc2. 

El plazo se cierra el próximo domingo a las 23:59.

SOLUCIÓN: Como bien habéis respondido la mayoría, el artículo en cuestión era An Unbound Universe? de J. Richard Gott III, James E. Gunn, David N. Schramm y Beatrice M. Tinsley. (Esta última era la científica de las pistas.) Lo doy por bueno incluso a los que no habéis puesto el signo de interrogación, ;-) 

A todo lo que habéis comentado sobre su importancia, yo añadiría que el artículo plantea la posibilidad de una constante cosmológica distinta de cero, algo que llevaba décadas en el olvido, después de haber sido rechazada hasta por su propio creador, Albert Einstein.

Beatrice Tinsley (1941-1981) | Fuente

Otros habéis citado el artículo Will the Universe Expand Forever?, que publicaron los mismos autores en el número 234 de la revista Scientific American, de marzo de 1976, y que precisamente se trata de una versión divulgativa de su anterior trabajo. Desgraciadamente, en este caso no aparece el genial texto introductorio de Lucrecio, perteneciente a su poema De Rerum Natura, como se puede comprobar en el pdf del artículo.

A todos, hayáis acertado o no, muchas gracias por el esfuerzo. Esto me anima a seguir buscando un desafío científico 3 que esté a vuestra altura, lo cual no es fácil.


sábado, 8 de noviembre de 2014

Preparándose para aterrizar en un cometa


Si todo va bien, el módulo Philae de la sonda Rosetta aterrizará sobre el cometa 67P/Churyumov-Geramisenko el próximo miércoles, 12 de noviembre, a las 15:30 UTC. ¡Qué nervios!

Los detalles sobre la complicada maniobra de aterrizaje puedes encontrarlos en este otro vídeo (en inglés):


Más información sobre la misión Rosetta en esta otra entrada.



lunes, 3 de noviembre de 2014

El mecanismo de Anticitera, un ordenador de la Antigua Grecia

(Esta entrada se publicó primero en el número 17 de la revista Buk Magazín, que puedes leer online.)


Una parte del mecanismo, en el Museo Arqueológico de Atenas (fuente)

Corría el año 1900 cuando unos pescadores de esponjas griegos encontraron en Anticitera, una pequeña isla al noroeste de Creta, los restos de un barco mercante romano naufragado. Además de ánforas, cerámicas y otras reliquias, apareció también una pieza del tamaño de una caja de zapatos, hecha de metal y madera, completamente cubierta de herrumbre y crustáceos. Nadie podía sospechar que aquello había sido uno de los instrumentos más complejos y extraordinarios de la Antigüedad.

Al cabo de unos meses, la madera se secó y el objeto se rompió en varios fragmentos. Entonces salió a la luz parte de un complicado mecanismo, formado por varias ruedas dentadas de bronce. También aparecieron unas placas con escalas numéricas y una inscripción escrita en griego antiguo.

Restos de la inscripción y las escalas (fuente)

Empezó una lenta labor de restauración e investigación que ha durado décadas. Hoy sabemos que el mecanismo de Anticitera fue una avanzada calculadora astronómica construida hace más de dos mil años, capaz de determinar las posiciones en el firmamento del Sol y la Luna en una fecha determinada, así como los eclipses y las fases de la Luna.

El mecanismo tenía un dial en la cara frontal y otros dos diales en su parte trasera. El dial frontal tenía dos escalas concéntricas: una de ellas indicaba los 365 días del año, de acuerdo con el calendario egipcio. La otra representaba los doce signos del zodíaco, es decir, las constelaciones de estrellas que se encuentran en la trayectoria aparente del Sol por la bóveda celeste.

Reconstrucción completa del mecanismo de Anticitera (fuente)

Por su parte, el dial superior trasero calculaba el mes en el ciclo metónico, de 235 meses lunares, indicándolo mediante un puntero extensible que se movía por una espiral de cinco vueltas.

Por último, el dial inferior trasero se utilizaba para la predicción de eclipses. Los antiguos griegos sabían que si se observaba un eclipse, solar o lunar, tendría lugar otro eclipse del mismo tipo al cabo de 223 meses lunares. Esto se debe a que, cada 223 meses lunares, el Sol, la Tierra y la Luna se vuelven a alinear. Este dial estaba compuesto por 223 divisiones, dispuestas en una espiral de cuatro vueltas, y con un puntero extensible, como el del dial metónico. Los meses con eclipses venían marcados con una inscripción donde se indicaba el tipo de eclipse y la hora.

Los dos diales traseros, uno al lado del otro (fuente)

El mecanismo de Anticitera tenía también una esfera, mitad blanca, mitad negra, que mostraba las fases lunares. Y un pequeño dial que indicaba los años de celebración de los Juegos Olímpicos y otros acontecimientos deportivos de la antigua Grecia.

Una manivela en un lateral permitía seleccionar una fecha en el calendario egipcio de su cara frontal o bien en el calendario metónico de 235 meses lunares. Al mismo tiempo, la manivela accionaba el complejo juego de engranajes para que el mecanismo proporcionase toda la información astronómica correspondiente a esa fecha en los otros diales. En la actualidad se han identificado 30 engranajes, aunque se piensa que el original tenía 37.

Reconstrucción por ordenador de su interior (fuente)

Por si todo esto fuera poco, el mecanismo contaba con varias innovaciones técnicas asombrosas para la época. Por ejemplo, tenía en cuenta las irregularidades del movimiento de la Luna debido a su trayectoria elíptica, que parece moverse unas veces más rápido que otras en el firmamento, gracias a un ingenioso sistema de ruedas que se movían como las tazas giratorias de los parques de atracciones. También tenía en cuenta que en cada nuevo ciclo de Saros, los eclipses ocurrían ocho horas más tarde que en el ciclo anterior. 


Estructura de los engranajes (fuente)

¿Quién construyó este extraordinario aparato hacia el año 150 a.C.? Siempre se había pensado que pudo ser algún astrónomo de Rodas, que entonces contaba con la escuela griega más importante de astronomía. Pero unas inscripciones en corintio, reveladas gracias a los rayos X, han dado un vuelco a esta hipótesis. En Siracusa, una colonia de Corinto, vivió el genial Arquímedes, maestro en la construcción de máquinas complejas. Arquímedes murió en el 202 a.C., así que no pudo haberlo construido. Pero quizás sí pudo haber diseñado el original, y lo que tenemos nosotros no es más que una copia realizada por sus discípulos.

Es posible que la solución al enigma de su origen se encuentre todavía en el fondo del mar, esperando a ser rescatado por algún moderno pescador de esponjas.



viernes, 17 de octubre de 2014

El desafío científico 1 #edc1

En la línea de otros blogs a los que admiro (Ese punto azul pálido y Experientia Docet), voy a inaugurar en el blog una nueva sección en la que os desafío a encontrar el nombre de un/a científico/a, a partir de una cita suya y algunas pistas adicionales. ¿Te atreves? Pues vamos allá con el primero.

La montaña Sainte-Victoire vista desde Bellevue (Paul Cezànne, 1902) | Fuente

La evolución del mundo se puede comparar a un castillo de fuegos artificiales que acaba de terminar: unas pocas volutas rojas, cenizas y humo. De pie sobre los rescoldos enfriados vemos el lento agonizar de los soles, e intentamos recordar el brillo ya disipado del origen de los mundos.

¿A qué científico pertenece esta hermosa cita, publicada en una revista en 1931? He aquí las pistas:

  1. Nació a mediados de la década de 1890 en un país de Centroeuropa. Quiso haber sido ingeniero de minas. Pero después de la Primera Guerra Mundial, cambió la ingeniería por la física y las matemáticas.
  2. Se le considera el padre de una de las teorías fundamentales de la cosmología moderna. Esta teoría se conoce popularmente con un nombre que fue acuñado en 1949 por uno de sus mayores detractores.
  3. Poco antes de que muriese nuestro personaje misterioso, dos científicos estadounidenses dieron un espaldarazo definitivo a su teoría, lo que les valió el Premio Nobel de Física trece años después.
Como es habitual en estos casos, voy a moderar los comentarios para que no se publiquen las respuestas que vayan llegando. También os invito a comentar la jugada en Twitter con el hashtag #edc1. 

El plazo se cierra el domingo a las 23:59, salvo que nadie lo haya acertado (cosa que dudo, porque sois muy listos).

SOLUCIÓN: Como bien habéis respondido todos, la cita es de Georges Lemaître, físico y sacerdote belga que está considerado el padre del Big Bang



En 1927, Lemaître resolvió las ecuaciones de Albert Einstein de la relatividad general y obtuvo un universo en expansión. Cuatro años más tarde afirmó que el universo había empezado como un "átomo primigenio", que se había desintegrado produciendo radiación cósmica y materia ordinaria en una espectacular bola de fuego.

La teoría del universo en expansión a partir de una singularidad inicial estuvo luchando desde finales de la década de 1940 con otra teoría que afirmaba que el universo no tenía principio ni fin, y que siempre había presentado el mismo aspecto. Esta teoría del estado estacionario fue promovida, entre otros, por el astrónomo inglés Fred Hoyle, quien en un programa de radio de la BBC bautizó a su competidora como la teoría del Big Bang o Gran Explosión.

En las décadas siguientes, la teoría del Big Bang fue acumulando evidencias a su favor. Pero el espaldarazo definitivo lo recibió en 1965, cuando los científicos estadounidenses Arno Penzias y Robert Wilson captaron la radiación cósmica de fondo. Es decir, el calor remanente de la gran explosión que, después de miles de millones de años, se había enfriado hasta 270 grados bajo cero. En 1978, Penzias y Wilson recibieron el Premio Nobel de Física por este descubrimiento.

Georges Lemaître murió el 20 de junio de 1966.



lunes, 22 de septiembre de 2014

Rosetta, la exploradora de cometas

(Esta entrada se publicó primero en el número 16 de la revista Buk Magazín, que puedes leer online.)
'Selfie' de Rosetta con el cometa al fondo (ESA/Rosetta/Philae/CIVA)

Sin duda, es uno de los acontecimientos científicos del año. Después de una década de viaje y más de 6.400 millones de kilómetros recorridos por el espacio interplanetario, la sonda espacial Rosetta, de la Agencia Espacial Europea, ha llegado a su destino: el cometa 67P/Churyumov-Geramisenko. El encuentro se produjo el pasado 6 de agosto, cuando Rosetta encendió uno de sus motores durante algo más de seis minutos para frenarse y acompasarse a Chury –como se le conoce familiarmente-, a una distancia de apenas 100 km de su superficie.

Imagen del 9 de agosto, a 99 kilómetros (ESA/NAVCAM)

No es la primera vez que una sonda espacial visita un cometa. Pero, a diferencia de las ocasiones anteriores, en los que simplemente pasaron de largo, Rosetta ha llegado para quedarse. Ahora mismo, ambos se encuentran en algún punto entre las órbitas de Marte y Júpiter, a más de 400 millones de kilómetros de la Tierra, viajando a toda velocidad –unos 55.000 kilómetros por hora- hacia el interior del Sistema Solar. Durante más de un año, la sonda será el inseparable compañero de Chury: juntos rodearán el Sol y volverán de nuevo hacia Júpiter.


Lanzada el 2 de marzo de 2004, el viaje de Rosetta ha sido una auténtica odisea. Para alcanzar su objetivo ha tenido que realizar varias maniobras de asistencia gravitatoria, un recurso utilizado por los ingenieros con el fin de ahorrar combustible. Consiste en utilizar la gravedad de un planeta para ganar el impulso con que viaja éste y aumentar la velocidad de la sonda sin gastar energía. Con este fin, Rosetta ha sobrevolado en total tres veces la Tierra y una vez Marte. Este periplo no ha sido en balde, ya que la sonda ha aprovechado para visitar dos asteroides, el 2867 Šteins y el 21 Lutetia, recopilando valiosa información sobre estos objetos y su origen.

El asteroide Steins, desde varios ángulos (ESA)

Asteroide Lutetia, en su máximo acercamiento (ESA)

La Tierra vista desde Rosetta, durante el sobrevuelo de 2009 (ESA)

No ha sido el único éxito de Rosetta durante el viaje. A pesar de ir equipada únicamente con paneles solares, ha conseguido llegar más allá de la órbita de Júpiter, donde el frío y la falta de luz solar son acuciantes. Para ello recurrió a una estrategia inusual en este tipo de misiones: entrar en hibernación. Ocurrió el 8 de junio de 2011, cuando se apagaron todos los sistemas de la nave, salvo el ordenador de a bordo y algunos calentadores, que se encendieron para evitar que la sonda se congelara a medida que se alejaba del Sol. Dos años y medio más tarde, Rosetta despertó de su letargo y empezó la reactivación de todos los instrumentos científicos y de control sin ningún contratiempo. 


Durante las próximas semanas, Rosetta se irá acercando progresivamente al cometa, hasta quedarse a solo 25 kilómetros de altura. Sus instrumentos cartografiarán la superficie para seleccionar el lugar idóneo donde aterrizará el módulo que lleva a cuestas, Philae (llamado así por la isla del Nilo cuyo obelisco ayudó a descifrar la Piedra de Rosetta). Si todo va bien, el próximo 11 de noviembre seremos testigos del momento más emocionante de la misión, cuando Philae se descuelgue de la sonda espacial, se pose suavemente sobre la superficie del cometa y se ancle mediante unos arpones. Una vez que esté sujeto, Philae estudiará de primera mano el núcleo del cometa, mientras Rosetta observará la evolución de Chury durante su trayectoria alrededor del Sol.

El lugar elegido para el aterrizaje de Philae (ESA/Rosetta)

Detalle del lugar del aterrizaje (ESA/OSIRIS/Rosetta)

Una vista aún más cercana del sitio (ESA/OSIRIS/Rosetta)

Los datos acumulados por Rosetta y Philae servirán para conocer las condiciones que reinaban en el Sistema Solar cuando se formó. En particular, podremos saber si parte del agua que hay en la Tierra vino del masivo bombardeo de objetos celestes -asteroides y cometas- que sufrió nuestro planeta hace 4.000 millones de años.

Los científicos ya se están frotando las manos. Las primeras imágenes obtenidas del cometa revelan una forma irregular y compleja, compuesta por dos partes claramente diferenciadas. Por otro lado, su temperatura es algo mayor que la prevista. En lugar de cubierta de hielo, su superficie es oscura y polvorienta.

El cometa, a una distancia de 28,6 km el pasado 19 de septiembre.
Se aprecian los chorros de gas y polvo (ESA/Rosetta/NAVCAM)

Veremos qué otras sorpresas nos depara esta histórica misión.